Joint Study by Sunway University and Harvard Medical School Shows Gene Therapy Can Advance Cancer Treatment

Report Post

Sunway University’s Professor Jeff Tan Kuan Onn of the Department of Biological Sciences and Professor Poh Chit Laa from the Centre for Virus and Vaccine Research, along with their research collaborators from Harvard Medical School’s Center for Stem Cell Therapeutics and Imaging (USA) as well as University of Tennessee Health Science Centre (USA) have completed a study that has demonstrated the efficacy of molecular gene therapy as a new strategy for cancer treatment.

The research could potentially contribute to shorter treatment time for cancers, reduce treatment costs and minimize the adverse effects of current chemo-drugs in cancer patients such as susceptibilities toward microbial infections, hair loss, and other side effects of chemo-drugs that drastically affect the quality of life of cancer patients undergoing therapy.

Principal Investigator Professor Jeff Tan explained, “Currently, chemo-drugs are relatively ineffective against cancer cells that have developed drug-resistance resulting in the need for high doses of chemo-drugs or a combination of chemo-drugs to be administered to patients with cancer cells. Chemo-drug resistant cancer cells also can spread quickly and that drastically reduce the survival rate of cancer patients”.

“Our research utilizes molecular gene therapy which is the introduction of genetic materials into cancer cells to promote the sensitivity of cancer cells to chemo-drugs. By genetically engineering the cancer cells, we find that we can induce the cancer cells to produce activated pro-death and tumor suppressor proteins that cause cell death and growth arrests in cancer cells. The weakened cancer cells can then be killed relatively easily by the administration of chemo-drugs in smaller doses. Ultimately, the research could contribute to increasing the survival rates of cancer patients undergoing cancer treatments” he added.

Co-Investigator Professor Poh Chit Laa said that the effectiveness of the strategy has been demonstrated in mice implanted with human breast cancer cells. “In the mice that were treated with the gene therapy, the tumors obtained from the treated mice showed significant tumor cell death and the tumors were 20 times smaller and 32 times lighter in volume and weight, respectively, when compared to the tumors obtained from the untreated mice. The results indicated that gene therapy was able to shrink the tumors significantly, even without treatment with chemo-drugs.  Small doses of market-available anti-cancer drugs could then be used to kill the cancer cells effectively. We hope to see our research contribute to better survival rates of cancer patients, and minimize the side-effects associated with anti-cancer drugs,” said Professor Poh.

“We are currently working on investigations to optimize the delivery of the gene therapy and anti-cancer drugs to human tumors with hopes that this will result in tangible clinical outcomes,” said Professor Jeff Tan.

The research project was recently published in the peer-review Journal of Cancer Research and Clinical Oncology. Collaborators for the research include Lee Yong Hoi, Pang Siew Wai and Samson Eugin Simon from the Department of Biological Sciences, Sunway University; Esther Revai Lechtich and Khalid Shah, of the Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School (USA); Suriyan Ponnusamy and Ramesh Narayanan from the Department of Medicine, Centre of Cancer Drug Discovery, College of Medicine, University of Tennessee Health Science Centre (USA).

The research is a result of a collaboration agreement between Harvard Medical School and Sunway University aimed at developing new cancer therapies targeting drug-resistant cancer cells. In 2016, Professor Jeff Tan visited Harvard University on the Jeffrey Cheah Travel Grant which enabled him to better understand how cancer research projects are conducted as well as examining experimental models used to study cancer biology at Harvard University, Massachusetts General Hospital (MGH), a hospital affiliated with Harvard Medical School, and the Dana-Farber Cancer Institute.

To read the jointly published article: https://link.springer.com/article/10.1007/s00432-020-03231-9